High-dimensional Probability and Statistics — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 12: Строка 12:
  
 
= Seminar content =
 
= Seminar content =
 +
 +
=== Probability ===
  
 
* (17.01.24) Example 2.4 from [[#wainwright|[Wainwright]]], Lemma 2.2 from [[#blm|[BLM]]]
 
* (17.01.24) Example 2.4 from [[#wainwright|[Wainwright]]], Lemma 2.2 from [[#blm|[BLM]]]
Строка 28: Строка 30:
  
 
* (21.03.24) Theorem 1.2 of [[#zhivotovsky | [Zhivotovsky]]], Concentration of Lipshitz and separately convex function of bounded random variables (Theorem 6.10 from [[#blm|[BLM]]]), Concentration of the supremum of an empirical process (Section 3.4 of [[#wainwright|[Wainwright]]])
 
* (21.03.24) Theorem 1.2 of [[#zhivotovsky | [Zhivotovsky]]], Concentration of Lipshitz and separately convex function of bounded random variables (Theorem 6.10 from [[#blm|[BLM]]]), Concentration of the supremum of an empirical process (Section 3.4 of [[#wainwright|[Wainwright]]])
 +
 +
=== Statistics ===
  
 
= References =
 
= References =

Версия 16:05, 6 июня 2024

Classes

Wednesdays 16:20–17:40, in room R307.

Teachers: Alexey Naumov, Quentin Paris

Teaching Assistant: Fedor Noskov

Lecture content

Seminar content

Probability

  • (31.01.24) Section 2.1.3 and Example 2.12 from [Wainwright]
  • (24.02.24) Herbst's argument (Proposition 3.2 from [Wainwright]), Sub-additivity of the entropy (Theorem 4.22 from [BLM]), logorithmic Sobolev inequality for Gaussian random variables (Theorem 5.5 from [BLM])
  • (14.03.24) Dimension-free concentration of sample covariance matrix in the spectral norm (Theorem 1.2 of [Zhivotovsky])
  • (21.03.24) Theorem 1.2 of [Zhivotovsky], Concentration of Lipshitz and separately convex function of bounded random variables (Theorem 6.10 from [BLM]), Concentration of the supremum of an empirical process (Section 3.4 of [Wainwright])

Statistics

References

links are available via hse accounts

[van Handel] Ramon van Handel. Probability in High Dimensions, Lecture Notes

[Vershynin] R. Vershynin. High-Dimensional Probability

[Wainwright] M.J. Wainwright. High-Dimensional Statistics

[BLM] Boucheron et al. Concentration inequalities

[Zhivotovsky] Nikita Zhivotovskiy. Dimension-free bounds for sums of independent matrices and simple tensors via the variational principle. Electron. J. Probab. vol. 29 (2024), article no. 13, 1–28.