Statistical learning theory — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Bbauwens (обсуждение | вклад) м |
Bbauwens (обсуждение | вклад) м |
||
| Строка 19: | Строка 19: | ||
|- | |- | ||
| − | | 19 sept || Sauer's lemma, agnostic PAC-learning, structural risk minimization || | + | | 19 sept || Sauer's lemma, agnostic PAC-learning, structural risk minimization || [https://www.dropbox.com/s/xf0xz1dlnps90ii/3lect.pdf?dl=0 notes.pdf] Only the first part of the notes. || |
|- | |- | ||
Версия 22:00, 17 сентября 2017
General Information
Course materials
| Date | Summary | Lecture notes | Problem list |
|---|---|---|---|
| 5 sept | PAC-learning and VC-dimension: definitions | 1st and 2nd lecture Updated on 13th of Sept. | Problem list 1 |
| 12 sept | PAC-learning and VC-dimension: proof of fundamental theorem | Problem list 2
| |
| 19 sept | Sauer's lemma, agnostic PAC-learning, structural risk minimization | notes.pdf Only the first part of the notes. | |
| 26 sept | Computational learning theory |
| |
| 3 okt | Boosting: the adaBoost algorithm | ||
| 10 okt | Boosting: several other algorithms | ||
| 17 okt | Online learning algorithms |
|
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book:
Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
Office hours
| Person | Monday | Tuesday | Wednesday | Thursday | Friday | ||
|---|---|---|---|---|---|---|---|
| |
Bruno Bauwens | 15:05–18:00 | 15:05–18:00 | Room 620 | |||
| |
Quentin Paris |