Statistical learning theory
Материал из Wiki - Факультет компьютерных наук
Версия от 19:06, 13 сентября 2017; Bbauwens (обсуждение | вклад)
General Information
Course materials
| Date | Summary | Lecture notes | Problem list |
|---|---|---|---|
| 5 sept | PAC-learning and VC-dimension: definitions | 1st and 2nd lecture Updated on 13th of Sept. | Problem list 1 |
| 12 sept | PAC-learning and VC-dimension: proof of fundamental theorem | Problem list 2
| |
| 19 sept | Sauer's lemma, agnostic PAC-learning, structural risk minimization | ||
| 26 sept | Computational learning theory |
| |
| 3 okt | Boosting: the adaBoost algorithm | ||
| 10 okt | Boosting: several other algorithms | ||
| 17 okt | Online learning algorithms |
|
The materials of the first 3 lectures are covered in chapters 1-6 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
This book gives a gentle introduction and repeats all necessary background from probability theory and statistics.
Office hours
| Person | Monday | Tuesday | Wednesday | Thursday | Friday | ||
|---|---|---|---|---|---|---|---|
| |
Bruno Bauwens | 15:05–18:00 | 15:05–18:00 | Room 620 | |||
| |
Quentin Paris |